Map > Problem Definition > Data Preparation > Data Exploration > Univariate
 

Data Exploration - Univariate Analysis

I. Data Preparation

1- Load libraries

library(data.table)
library(formattable)
library(plotrix)
library(limma)
 

2- Read Expressions file

df <- read.csv("GSE74763_rawlog_expr.csv")
df2 <- df[,-1]
rownames(df2) <- df[,1]
expr <- transpose(df2)
rownames(expr) <- colnames(df2)
colnames(expr) <- rownames(df2)
dim(expr)
 

3- Read Samples file

targets <- read.csv("GSE74763_rawlog_targets.csv")
colnames(targets)
dim(targets)
 

4- Merge Expressions with Samples

data <- cbind(expr, targets)
colnames(data)
dim(data)
 
II. Categorical Variables
1- Count and Count%
univar.count <- table(data$target)/nrow(data)
univar.countpct <- formattable::percent(univar.count)
univar.count
univar.countpct

 
2- Pie and Bar charts
pie(table(data$target), main = "target")
lbl <- unique(data$target)
pie3D(table(data$target),labels=lbl, explode = 0.1, main = "target")
barplot(table(data$target), main="target", xlab="", ylab="Count", col="blue")

 
III. Numerical Variables
1- Summary (Descriptive Statistics)
summary(data$age)

 
2- Plots
boxplot(data$age, col="cyan", main="age", ylab="intensity")
hist(data$age, col="cyan", main="age", ylab="intensity")
plotDensities(data$age, main="age", col="blue")

 
3- Density plot for all expressions
plotDensities(expr, main="Expressions", legend=F)

 
IV. Bioada SmartArray
This video shows how you can perform univariate analysis using Bioada SmartArray significantly faster and easier.